
4810-1183 Approximation and Online Algorithms with Applications

Lecture Note 8: Online Algorithm for Secretary Problem

Problem Definition

Let us consider the situation when we have a number of persons applying for a secretary position at our

company. We will interview each applicants one by one, and, after the interview, we will give each

applicant his/her score. We want to select an applicant with the largest score. However, we have to tell

all applicants if we will hire them immediately after the interview. We cannot continue the interviews

after we accept to hire an applicant, and we cannot hire someone whom we have rejected before.

 We will call this problem as the “secretary problem”. Its optimization model is as follows:

Input: Score of each applicant 𝑠1, … , 𝑠𝑛

Output: Decision if we select each applicant 𝑑1, … , 𝑑𝑛 ∈ {Yes, No}

Constraint: 1) only one 𝑑𝑖 is Yes.

 2) 𝑑𝑖 is decided based on only 𝑠1, … , 𝑠𝑖

Objective Function: Maximize the score of the selected participant

On last week, we have introduce an online strategy for the ski rental problem. The strategy is

2-competitive, that is 𝑆𝑂𝐿𝐼 ≤ 2 ⋅ 𝑂𝑃𝑇𝐼 for all possible input 𝐼 . As the secretary problem is a

maximization problem, if we work on the competitive ratio, the competitive ratio 𝛼 must be smaller

than 1. A strategy is 𝛼-competitive if 𝑆𝑂𝐿𝐼 ≥ 𝛼 ⋅ 𝑂𝑃𝑇𝐼 for all possible input 𝐼.

However, as discussed in the previous lecture note, the competitive ratio is not the only way to

justify an online algorithm. We will introduce another justification in this lecture note. That is “the

probability that we will have an optimal solution”.

Let us now assume that the interview order of the applicants is random. When we have 3

applicants, there are 6 possible orders:

1. 𝑠1 > 𝑠2 > 𝑠3,

2. 𝑠1 > 𝑠3 > 𝑠2,

3. 𝑠2 > 𝑠1 > 𝑠3,

4. 𝑠2 > 𝑠3 > 𝑠1,

5. 𝑠3 > 𝑠1 > 𝑠2,

6. 𝑠3 > 𝑠2 > 𝑠1.

We assume that the probability of having each of the above order is 1/6. When we have 𝑛 applicants,

we will have 𝑛! orders and the probability of having each order is 1/𝑛!.

When the goal of online algorithms is “the probability of having an optimal solution”, the

assumption in the previous paragraph is usually essential. We usually can find some probabilistic

distribution on our input that makes the probability very small.

Strategy

By the assumption in the previous section, if we always choose the first applicants. The score of our

selected participant is 𝑠1. When the number of applicants is 3, 𝑠1 is the largest value with probability
1

6
(order 1) +

1

6
(order 2) =

1

3
. When the number of applicants is 𝑛, we will have the optimal value

with probability 1/𝑛, which might be too less.

Let us consider the following strategy:

1: maxValue = 0

2: For i = 1 to n:

3: if i <= n/e:

4: d[i] = false

5: maxValue = max(s[i], maxValue)

6: else if i = n:

7: d[i] = true

8: else if s[i] > maxValue:

9: d[i] = true

10: d[j] = false for all j > i

11: break

We will not select the first 𝑛/𝑒 applicants regardless of their scores. They are chosen to be a benchmark

of our selection. We will find the maximum among their scores, and, if a score of a later applicants is

larger than the maximum, we will select his/her. If none of the later applicants has a larger score, we

will choose the last applicant.

 Let now work on the case of 3 applicants. There,
𝑛

𝑒
=

3

𝑒
≈ 1. We will never select the first

applicant, and will use his/her score 𝑠1 as a benchmark. Recall the 6 cases in the previous page. The

score of the second applicants, 𝑠2, is larger than the benchmark 𝑠1, in case 3, 4, and 6. We choose the

second applicant on that case, and we choose the third applicant on the others. We will have the largest

score in case 3, 4, and 5, which make the probability of having an optimal solution be
1

2
. This increases

from that of the trivial strategy,
1

3
.

Analysis

 We have shown that the success probability is 1/2, when 𝑛 = 3. In this section, we will show

that, for any 𝑛, the success probability is no less than
1

𝑒
≈ 0.36.

 With probability 1/𝑒, the best applicant is among the first 𝑛/𝑒 applicants. Because the selected

participants will not be in the first 𝑛/𝑒 applicants, the best participant will not be selected. Our strategy

will fail to find the best applicant in this case.

 Now, let us suppose that the best participant is the 𝑚th participant such that 𝑚 > 𝑛/𝑒. There

are 𝑚 − 1 participants before the participant. Consider the figure in the following page. We will not

select the 𝑚th participant when there is some applications in the orange zone have a higher score than

all the first 𝑛/𝑒 aplicants.

 Let us consider the first two zones (blue and orange) as a subarray of the array of all scores. If

the largest score in the subarray is in the first zone, we will never select an applicant from the orange

zone. We will interview the 𝑚th participant, and, as he/she has a higher score than everyone in the first

zone, he/she will be selected. Our algorithm can find an optimal solution, which is the 𝑚th participant.

On the other hand, if the largest score in the subarray is in the second zone, an applicant with

the largest score or someone in the orange zone will be selected. Our algorithm will fail to find an

optimal solution.

When we have a random order, a subarray of the order will be also random. Because of that,

the order of the 𝑚 − 1 predecessors is also random. The probability that we have the largest in the

subarray in the first 𝑛/𝑒, which is also the success probability, is (
𝑛

𝑒
)/(𝑚 − 1).

 We know that the success probability equal 𝑃1 + ⋯ + 𝑃𝑛 when 𝑃𝑖 is the probability that the best

applicant is the 𝑖th applicant and he/she is selected. It is clear from the definition that 𝑃𝑖 = 0 for 𝑖 ≤ 𝑛/𝑒.

For 𝑖 > 𝑛/𝑒, the probability of having 𝑚 equal a particular number 𝑖 is 1/𝑛, and, by the previous

paragraph, the success probability when 𝑚 = 𝑖 is (
𝑛

𝑒
) /(𝑖 − 1). Thus, we know that the success

probability is

∑
1

𝑛
⋅

𝑛
𝑒

𝑖 − 1

𝑛

𝑖=
𝑛
𝑒

+1

=
1

𝑒
∑

1

𝑖 − 1

𝑛

𝑖=
𝑛
𝑒

+1

=
1

𝑒
∑

1

𝑖

𝑛−1

𝑖=
𝑛
𝑒

≈
1

𝑒
∫

1

𝑖

𝑛

𝑛
𝑒

𝑑𝑖 =
1

𝑒
[ln 𝑛 − ln

𝑛

𝑒
] =

1

𝑒
[ln 𝑛 − (ln 𝑛 − ln 𝑒)]

=
1

𝑒
.

Online Navigation Summaries

Let us suppose that we have a drone that will take a video which consist of a million of images, and we

want to find the meaning of the video by a machine learning algorithm. It is usually very hard to make

sense of a large number of images, so we want to select the most meaningful images out of them. We

call the problem “navigation summaries”. In the following footage, we may select the image highlighted

in blue. They tell us that the video were taken at a place with a bicycle and a gate.

 When a video is as long as hours and it is broadcasted at a social network, users might want to

have a part of summary before the end of the broadcasting. Also, a drone might want to place a sensor

at important places to watch the change at there. It would be more efficient if the drone can place the

sensor just after a photo is taken.

 The authors of [2] propose a way to measure an “importance” of each picture. They assume

that we will select at most 𝑘 images from the video. By that, the optimization model for the online

navigation summaries is as follows:

Input: Importance of each image 𝑠1, … , 𝑠𝑛

 Number of selected images 𝑘

Output: Decision if we select each image 𝑑1, … , 𝑑𝑛 ∈ {𝑌𝑒𝑠, 𝑁𝑜}

Constraint: 1) The number of selected images is 𝑘

 2) For all selected images 𝑖, 𝑠𝑖 is one of the 𝑘 largest scores.

 3) 𝑑𝑖 is decided based only on 𝑠1, … , 𝑠𝑖

Objective Function: None

We want to satisfy the second constraint with as high probability as possible. The authors

devise an algorithm based on the strategy in the following page.

1: threshold = 0

2: For i = 1 to n:

3: if i <= r:

4: d[i] = false

5: threshold = max(s[i], maxValue)

6: else if i = n - k + (number of selected sensors) + 1:

7: d[i] = true

8: else if s[i] > maxValue:

9: d[i] = true

10: if we have already selected k images:

11: d[j] = false for all j > i

12: break

The only difference between the first and the second algorithm is: we do not stop after an image is

selected, but wait until we have selected 𝑘 images. We previously set 𝑟 to 𝑛/𝑒, and, actually, the value

maximize the success probability. We are going to calculate at the following paragraph the best value

for 𝑟 in this application.

 Let us consider the figure at the previous page again. For each 𝑟 < 𝑚 ≤ 𝑛, we will calculate

the probability that:

1. 𝑠𝑚 is one of the top 𝑘 score;

2. before 𝑚, 𝑘 − 1 correct images are selected;

3. 𝑚 is selected in the above algorithm.

By the random order, the probability of having 1) is 𝑘/𝑛. Then, for 2), by our algorithm, we must have

𝑘 – 1 images of the top 𝑘 in the second zone. The probability of having that is (
𝑚 − 1 − 𝑟

𝑘 − 1
)/(

𝑛
𝑘 − 1

).

For 3), we must be sure that other than the 𝑘 − 1 images in 2), the next largest score in the first and the

second zone must be in the first zone. Otherwise, we will choose that next best image. That is, the 𝑘th

largest score in the first 𝑚 − 1 images is in the orange zone. With the assumption that the score order

is random, we know that the probability is 𝑟/(𝑚 − 1).

 To conclude, the probability that we have 𝑚 satisfying the three conditions is
𝑘

𝑛
⋅

(
𝑚−1−𝑟

𝑘−1
)

(
𝑛

𝑘−1
)

⋅
𝑟

𝑚−1
.

The probability that having some 𝑚 satisfying the conditions is then equal to

∑ [
𝑘

𝑛
⋅

(
𝑚 − 1 − 𝑟

𝑘 − 1
)

(
𝑛

𝑘 − 1
)

⋅
𝑟

𝑚 − 1
]

𝑛

𝑚=𝑟+1

.

By experiment, the authors show that the value of 𝑟 that maximizes the probability can be approximated

by the value
𝑛

𝑘𝑒
1
𝑘

.

 In practice, if we just aim to choose the maximum scores, we might have a lot of images with

the same object. The authors of the paper have a heuristic to avoid that. They do not around 2 selected

images to be closer than a specific time frame.

Exercises

We will introduce the concept of randomized algorithm to the secretary problem. We will select the

secretary 𝑖 with probability 𝑖/𝑛, if 𝑠𝑖 is the largest among 𝑠1, … , 𝑠𝑖.

Question 1: Discuss why the probability that we choose applicant 1 is 1/𝑛. Also, discuss why the

probability that we correctly choose applicant 1 is 1/𝑛2.

Question 2: Discuss why the probability that we choose applicant 2 is
𝑛−1

𝑛2 . Also, discuss why the

probability that we correctly choose applicant 2 is
2

𝑛
⋅ (𝑛 − 1)/𝑛2.

Question 3: Discuss why the probability that we choose applicant 3 is (𝑛 − 1)2/𝑛3. Also, discuss why

the probability that we correctly choose applicant 3 is
3

𝑛
⋅ (𝑛 − 1)2/𝑛3.

Question 4: From your answer of Question 1 –3, guess what the success probability of this strategy is.

Question 5: Given ∑ [(
𝑛−1

𝑛
)

𝑚
⋅ 𝑚]𝑛

𝑚=1 = (𝑛 − 1)𝑛1−𝑛[𝑛𝑛 − 2(𝑛 − 1)𝑛].

Write your success probability Question 4 in a form without summation.

Question 6: Given lim
𝑛→∞

1 − 2 [
𝑛−1

𝑛
]

𝑛
= 1 −

2

𝑒
. Discuss why this strategy is not better than the strategy

discussed in the class.

Construct 10,000 arrays of size 𝑛 with random permutations, and test an algorithm for the secretary

problem on those arrays.

Question 7: What is the success probability of your algorithm when 𝑛 = 100?

Question 8: Plot the relationship between 𝑛 and the success probability.

Question 9: From the plot, what is relationship between 𝑛 and the success probability?

References

[1] T. S. Ferguson, “Who solved the secretary problem?”, Statistical Science, Vol. 4, No. 3, pp. 282-

289, 1989.

[2] Y. Girdhar, G. Dudek, “Online navigation summaries”, Proceeding of the 2010 IEEE International

Conference on Robotics and Automation (ICRA 2010), pp. 2035-2040, 2010.

